Čísla smyslu zbavená

„Nastavte měření a my se pak podle těch čísel rozhodneme.“ Logické, ne?

Problém je v tom, že samotná čísla je třeba většinou číst v určitém kontextu, aby dávala smysl nebo nebyla zavádějící.

Většina online nástrojů pro zjišťování chování návštěvníků na webu nabízí pěkné tabulky, někdy i grafy. Proto se může zdát, že platit někomu, aby z takových dat vyvozoval závěry a dělal shrnutí, je zcela zbytečné.

Proč to nemusí být pravda? Pár příkladů:

Příčina a následek

Slyšeli jste také někdy:

  • „Na web mi chodí lidi hlavně z Google. Optimalizovat pro Seznam se mi nevyplatí.“
  • „Na web nikdo z mobilu nechodí a když přijde, tak ho hned opustí. Redesignovat web pro mobilní zařízením nedává smysl.“

A najdou se i další příklady, kdy lidé zaměňují příčinu za následek.

Není to náhodou obráceně?

  • Lidé ze Seznamu na web nechodí, protože se web nachází na často hledané fráze až na 6. stránce výsledků vyhledávání.
  • Lidé, kteří přijdou z mobilu na web, který se na mobilu špatně ovládá, příště najdou jiný lépe řešený web. Je také pravděpodobné, že Google ve výsledcích vyhledávání upřednostní webyoptimalizované pro chytré telefony.

Korelace neznamená kauzalitu

Studie Searchmetrics ukázala, že weby, které se umisťují ve vyhledávačích na předních příčkách, jsou hojně odkazovány na Facebooku (mají hodně lajků a sdílení). To však neznamená, že počet sdílení či lajků ovlivňuje pozice ve vyhledávačích.

Pokud vidíme, že jdou dvě věci ruku v ruce (v našem případě počet sdílení a pozice ve vyhledávačích), nemusí to znamenat, že jedna je příčinou a druhá následkem. Obě skutečnosti mohou mít třeba jednu příčinu. Odkazy na kvalitní web jsou uživateli spontánně šířeny, zatímco pozice webu ve vyhledávačích je dána mnoha různorodými faktory.

A/B testování a vliv náhody

Zjednodušeně: A/B testování je postup, kdy náhodně rozdělíme návštěvníky webu na dvě skupiny. Každé skupině zobrazíme trochu jinak vypadající stránku a změříte, zda se pro jednotlivé poloviny bude lišit počet konverzí (objednání newsletteru, zanechání kontaktu atp.).

Řekněme, že návštěvnost stránky je 2000 zobrazení (tedy pro každou skupinu 1000 zobrazení). Při původním vzhledu stránky zanechalo kontakt 40 lidí, v upravené verzi 50 lidí.

Super, tak to máme 25% zlepšení, že? Ne. Co když je to jen náhoda? V úvahu je třeba vzít statistickou významnost. Jinými slovy: Rozdíl v počtu konverzí je tak malý, že při opakování testu se výsledek nemusí vůbec potvrdit.

Vnější vlivy

„Před měsícem jsme upravili web a už teď máme nárůst návštěvnosti a prodejů o 20 procent. Zabralo to lépe, než jsme čekali.“

A nemůže to být tím, že se blíží Vánoce a celková poptávka stoupá?

Schválně uvádím triviální příklad. Příčin, které ovlivní vyhodnocení změn na webu, může být více:

  • sezónnost zboží či služby (je třeba mít meziroční srovnání)
  • online kampaň (tu bychom měli relativně snadno rozeznat)
  • offline kampaň (poznáme v analytickém nástroji už hůře, ale možnosti tu jsou)
  • nové produkty (třeba: MP3 přehrávače vytlačily z trhu discmany)
  • boom, poptávková bublina (můžeme se občas svézt i na vlně kampaně konkurence)

Zúžené zorné pole

„V příloze zasíláme seznam klíčových slov. Vypracujte tabulku s počtem hledání.“

Pokud jste profesionálem v určité oblasti, logicky používáte spoustu pojmů, které laická veřejnost nezná a nepoužívá.

Pokud významnou část vašich zákazníků tvoří laici, vyplatí se mluvit jejich jazykem. Odborný termín můžete ponechat v sekci pro odborníky či uvádět v závorce. Pár příkladů z praxe:

  • Otopné těleso vs. topení, radiátor.
  • Hromadné dálkové ovládání (HDO) vs. noční proud.

Pokud rozšíříte svůj pohled, možná zjistíte, že návštěvníci hledají mnohem častěji fráze, které byste vy – jakožto profíci v oboru – nikdy nepoužili.

Průměry vs. segmentace

„Průměrná délka návštěvy webu je 2:54 minut.“ nebo „Během jedné návštěvy si návštěvníci v průměru zobrazí 3,25 stránky.“

Je to hodně nebo málo? Co vám tento údaj řekne?

S průměry je často ta potíž, že shrnují chování velmi různorodých skupin. Jedna skupina s velmi odlišnými parametry pak může průměry velmi zkreslit.

Zajímavější je položit si otázky jako:

  • Liší se výrazně počet stránek na návštěvu u návštěvníků, kteří přišli z kampaně?
  • Jaká je průměrná délka návštěvy v produktové sekci vs. blogu na našem webu?

Informace vztažená k určitému segmentu návštěvníků umožňuje srovnání a dává mnohem větší smysl.

Vždy je dobré se ptát v kontextu cíle, který má návštěvník webu.

  • Dostal se návštěvník hledající adresu provozovny přímo na stránku Kontakt a pak odešel? Super. – Nicméně míra okamžitého opuštění nám vzrostla.
  • Zobrazil si čtenář našeho blogu jen jeden článek? Co můžeme udělat, abychom ho nalákali k přečtení dalších článků? – Například zobrazovat související články.

Předpokladem správného vyhodnocení je samozřejmě i znalost metodiky výpočtu. Proto kvízová otázka na závěr:

„Jak spočítá Google Analytics délku návštěvy, při které návštěvník zobrazil jednu stránku?“


Photo Credit: Krissyho via Compfight cc

Mohlo by vás zajímat

Náš B2C a B2B e-shop pro SENESI získal už pět významných ocenění

SENESI patří mezi naše dlouhodobé klienty, s nimiž průběžně rozvíjíme jejich online řešení. Těší nás, že to oceňují jak zákazníci, tak poroty prestižních soutěží.

Celý článek

FG Forrest v roce 2023 – 15 ocenění, přes 400 CV a 99,95 % SLA

Minulý rok jsme pokračovali v rozvoji online řešení předních firem českého byznysu, podpořili řadu smysluplných aktivit a znovu se stali Autorem roku podle WebTop100.

Celý článek

Přeskočit na hlavní nabídku